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Abstract—Facial expression recognition has enormous poten-
tial for downstream applications by revealing users’ emotional
status when interacting with digital content. Previous studies
consider using cameras or wearable sensors for expression recog-
nition. However, these approaches bring considerable privacy
concerns or extra device burdens. Moreover, the recognition
performance of camera-based methods deteriorates when users
are wearing masks. In this paper, we propose FacER, an active
acoustic facial expression recognition system. As a software solu-
tion on a smartphone, FacER avoids the extra costs of external
microphone arrays. Facial expression features are extracted by
modeling the echoes of emitted near-ultrasound signals between
the earpiece speaker and the 3D facial contour. Besides isolating
a range of background noises, FacER is designed to identify
different expressions from various users with a limited set of
training data. To achieve this, we propose a contrastive external
attention-based model to learn consistent expression features
across different users. Extensive experiments with 20 volunteers
with or without masks show that FacER can recognize 6 common
facial expressions with more than 85% accuracy, outperforming
the state-of-the-art acoustic sensing approach by 10% in various
real-life scenarios. FacER provides a more robust solution for
recognizing facial expressions in a convenient and usable manner.

Index Terms—Acoustic sensing, expression recognition, con-
trastive learning, attention, domain adaptation, smartphone

I. INTRODUCTION

With the emergence of new media in the digital era, a
variety of social media services are craving for users’ attention.
Fine-grained emotional reaction understanding is pivotal to
facilitating a user’s interaction with digital content. Tradi-
tionally, crowd-sourced ratings and reviews have been used
for evaluating users’ feedback on services. However, they are
too coarse-grained to provide real-time spontaneous feedback.
To provide a more personalized service, we need an accurate
and robust approach to recognizing the users’ emotions and
acquiring users’ spontaneous feedback.

A number of techniques have been proposed to recognize
emotions, expressed by various biometric features, such as
facial features [1]-[3], speech features [4], or heartbeats [5].
Nevertheless, as a universal form of nonverbal communication,
facial expression is recognized as the most direct way of un-
derstanding human emotions [6]. There are six widely-adopted
facial expressions (FEs): anger, disgust, fear, happiness, sad-
ness, and surprise [7]. These FEs can be modeled by the Facial
Action Coding System (FACS), which includes action units
(fundamental action muscles) and action descriptors (unitary
movements of several muscle groups) [8]. When people make
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(a) FacER application scenario. (b) Six facial expressions [15].

Fig. 1: Facial expression recognition using a smartphone.

different facial expressions, different facial muscles would
move, which could be captured by various sensing signals.

Existing facial expression recognition (FER) methods can
be categorized as camera-based [9]-[11], radio-based [12]—
[14] and acoustic-based [3] expression recognition. However,
the existing camera-based methods raise privacy concerns
due to their continuous video recording on a device. For
instance, FaceWarehouse [9] collects RGBD data of different
expressions from multiple users. Yet, serious privacy concerns
impede the wide adoption of such methods in a real-world
scenario. Moreover, these camera-based methods cannot accu-
rately recognize facial expressions when the users cover their
faces with masks. Other alternative methods require extra sens-
ing devices, which affects the usability of the technology. For
example, WiFace [13] uses a WiFi router with three antennas
placed at a specific position for FER, but it requires additional
hardware and configurations. PPGface [14] requires expensive
wearable devices with photoplethysmography sensors.

In this paper, we propose FacER, a Facial Expression
Recognition system based on near-ultrasound acoustic sensing
on a smartphone. We utilize commodity smartphones to emit
near-ultrasound signals (19-23 kHz) towards the user’s face.
As shown in Fig. la, the microphone on the smartphone will
receive the reflected echoes from the face surface, which will
carry the facial expression information. By examining the fine-
grained echo patterns, FacER can differentiate six different
types of facial emotional expressions as shown in Fig. 1b. We
demonstrate that in a scenario where a user holds a smartphone
at a relatively stable distance (e.g. 20-50 cm), FacER can
recognize six universal facial expressions with more than 85%
accuracy. Compared with the state-of-the-art acoustic-based
SonicFace [3], FacER uses a commodity smartphone without
requiring a customized microphone array, which presents a
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more convenient and usable solution for FER.

There are two main challenges in designing FacER. First,
acoustic interference, such as the multipath of reflected signals
and environmental noises, can significantly impact recognition
performance. Apart from the echoes reflected from the face,
the microphones can also receive echoes from the surrounding
obstacles. It is imperative to mitigate or remove any undesired
signals. However, even with the application of various noise-
reduction techniques, the environmental noises at a similar
frequency to the emitted signal could persist. Therefore, we
propose a contrastive external attention-based learning model
to depict more robust facial expression feature representations.
In this way, the model can distill the universal features of
expressions while eliminating background noises.

Second, different users express facial expressions in differ-
ent manners, and even the same user could express differently
at different times. This will result in the domain adaptation
issue, a common issue in machine learning (ML) models,
where a model trained on a labeled dataset (source domain)
cannot be successfully applied to a testing dataset (target
domain). This is caused by the distribution drift between the
source domain and target domain, which violates the common
independent and identically distributed (i.i.d.) assumption of
ML models. Therefore, we propose a domain adaptation
contrastive learning algorithm to align the distribution of the
source domain and target domain dataset. In this way, FacER
can achieve consistent performance in recognizing various
expressions across different users.

We evaluate FacER on a dataset collected from 20 volun-
teers of different ages, genders, and skin colors in various en-
vironments. We show that FacER can effectively recognize six
different facial expressions from different users. Remarkably,
it achieves more than 90% test accuracy when the training and
testing datasets have the same distribution. It achieves more
than 85% accuracy when training and testing on different sets
of users. In summary, we make the following contributions:

o« We design FacER, which uses a contrastive external
attention-based acoustic facial expression recognition
model to learn representative and robust facial expression
features while eliminating the background noise.

o We propose the domain adaptation contrastive learning
algorithm to align the training and testing data distribu-
tions, which can largely mitigate the negative effects of
variations in users’ facial expressions.

o We implement the smartphone-based system FacER and
perform the evaluations in various real-life scenarios. The
results show that FacER outperforms the state-of-the-art
approaches by more than 10% in recognition accuracy
with high mobility and convenience.

The rest of the paper is organized as follows. In Section II,
we summarize the related work. We introduce the preliminary
knowledge in Section III. In Section IV, we present FacER
and the proposed contrastive attention model. We provide
implementation details in Section V and evaluate the perfor-
mance of FacER in Section VI. We discuss the future work in
Section VII. Finally, we conclude in Section VIIL.

II. RELATED WORK

To identify the emotional status of users, researchers have
proposed to use body sensors to capture physiological signals
such as electromyographic (EMG) [1] and heart rate [16].
However, it normally requires a large time window such as
the 30s [17] of physiological signals to analyze the profile
of emotions, incurring low efficiency. ExpressEar [18] ap-
plies commercial earables augmented with inertial sensors to
capture facial muscle movements associated with expressions.
Similarly, to recognize facial expressions, FaceListener [19]
captures facial skin deformations by transforming a headphone
into an acoustic sensing device. However, it is cumbersome for
users to wear these external devices to sense emotions.

Another approach, wireless and mobile sensing, has been
used for behavior recognition tasks such as identifying daily
activities [20]-[24], and facial expressions [13]. For instance,
WiFace [13] analyzes the channel state information in WiFi
signals captured by the router, which has three antennas posi-
tioned on the top of the user’s head. The extracted waveform
patterns can be used to recognize facial expressions. Hof et
al. [25] propose the mm-Wave radar system with massive-
antenna elements to conduct facial recognition. However,
these approaches all require additional hardware and a special
placement setup.

Due to the wide availability of speakers and microphones,
acoustic sensing has also been widely studied. The basic idea
is to use the speaker to emit acoustic signals and analyze the
echo signals reflected by the sensing objects. It has a wide
range of applications including breathe monitoring [26], user
authentication [27], and activity recognition and tracking [28]-
[30]. For example, EchoPrint [27] combines acoustic and vi-
sual signals for user authentication. It emits inaudible acoustic
signals towards the user’s face and extracts features from the
echoes bouncing off the 3D facial contour. TeethPass [29] uses
earbuds to collect occlusal sounds in binaural canals to achieve
user authentication. LASense [30] achieves fine-grained activ-
ity sensing by increasing the number of overlapped samples
between the emitted and received acoustic signals through
signal processing, which enhances both sensing accuracy and
range. SonicFace [3] detects emotional expressions by deploy-
ing a customized microphone array to capture reflected echoes.
It calculates the frequency and phase shifts of pure tone signals
to extract expression features. However, their method cannot
compute the fine-grained facial information due to the limited
frequency resolution of pure tone signals.

III. PRELIMINARIES

In this section, we introduce the background of acoustic
signals, the preliminary knowledge of attention mechanisms
and contrastive learning.

A. Acoustic Signal

The acoustic signal refers to a coded chirp signal transmitted
by a device. Particularly, the chirp signal can be regarded
as the component of sawtooth modulation in the Frequency-
Modulated Continuous Wave (FMCW), which changes its
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operating frequency during the measurement. In FMCW, the
frequency of the signal will periodically increase or decrease
during transmission. The differences in frequency between
the transmitted and received signal are proportional to the
time delay At. Therefore, the FMCW can measure the small
movement of the target, which is calculated as follows:
’Uo‘At‘ - ’U()|Af|T (l)
2 2B

where R is the distance between the sound source and the
reflecting object, v is the speed of sound (340 m/s) at 20 °C,
At is the delay time, and Af is the measured frequency
difference. B is the chirp frequency bandwidth, and T is the
chirp periodic time. The duration of the transmitted waveform
T should be greater than the required receiving time for the
distance measuring range. We use % to measure the frequency
shift per unit of time. Therefore, with the features of the
FMCW, the chirp signal can help group reflections from
various distances into multiple range bins.

R:

B. Attention Mechanism

Similar to the human visual system, attention mecha-
nisms [31] aim to focus limited attention on key information,
which saves resources and distills the most essential informa-
tion. The basic idea of attention mechanisms is to combine all
of the encoded input features in a weighted fashion, with the
most important features receiving the highest weights.

Given a feature map F' € RN*d where N is the number of
elements and d is the feature dimension of each element, by
multiplying three different random initialized weight matrixes,
self-attention projects the F' into a query matrix Q € RY*?',
a key matrix K € RY*? | and a value matrix V € RV*4,
The self-attention is represented as follows:

Fout = softmaz(QKT)V, )

where softmaz(QK?T) is the attention matrix, and the F;
is the improved feature representation of the input F'.

C. Contrastive Learning

Contrastive representation learning aims to learn an embed-
ding space where dissimilar samples are spread out and similar
samples remain close together. Normally, a positive pair refers
to a pair of samples that have the same label, and a negative
sample pair has different labels.

The supervised contrastive loss [32] is defined as follows
when the training objective includes multiple positive and
negative pairs in one batch:

exp(z; - zp/T)
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where [ is a set of samples x within a batch, A(i) = I'\{i},
P(i) is a set of indices of all positives in the multiviewed
batch, |P(i)| is the cardinality, z = Proj(Enc(z)) is the
encoded feature representation by an encoder network Enc(-)
and a projection network Proj(-) such as a linear layer net-
work. The - denotes the inner product, and 7 is a temperature
parameter to adjust the final results.
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Fig. 2: The raw signal and the signal after noise removal.

IV. SYSTEM DESIGN

In this section, we design the acoustic sensing and signal
pre-processing techniques to prepare the sensing data. Then,
we propose the contrastive external attention-based domain
adaptation model for acoustic facial expression recognition.

A. Acoustic Sensing Design

A unique facial expression contour is a distinct collection
of various reflecting surfaces, which can produce a unique
sum of individual echoes. As different objects absorb and
attenuate sound waves to different degrees, it is possible to
differentiate between the reflected echoes from objects and
those from facial expressions [27].

1) Signal Generator: On a smartphone, there are usually
one main speaker and microphone at the bottom or on the
back, and an earpiece speaker and microphone at the top of
the phone body. Considering that the earpiece speaker has a
proper position to illuminate a user’s face as shown in Fig. 1a,
we select the earpiece speaker for emitting the acoustic signal.
Similarly, considering the gesture of holding a phone, the top
microphone is chosen since it is less affected by the hand.

The acoustic signal should satisfy the following properties.
(1) The period of the signal should be moderate to minimize
the overlap of echoes from various distances. (ii) The signal
should be distinguishable from the background noise in the
frequency domain, while the noise frequency is mostly under
8 kHz. (iii) The signal ought to be inaudible in real-world
scenarios. Therefore, considering that the change of facial
expression happens within 1 second, we choose a chirp signal
of 25 milliseconds with frequency sweeping from 19-23 kHz
to compose the inaudible acoustic signal with fading at the
start and the end. In this way, we can better capture the
expression features caused by muscle movements and filter
out echoes from different obstacles. According to the Nyquist
sampling theorem, the sampling rate is set as 48 kHz. FacER
leverages the earpiece speaker to periodically emit the near-
ultrasound signals and simultaneously uses the microphone to
receive the signals reflected by the face. We set up the time
interval as 50 milliseconds to allow all the reflected signals
from the previous chirp to be received, such that we can
separate two chirps before the following chirp is transmitted.

2) Noise Removal: Expression-irrelevant signals from var-
ious background noises, nearby people and obstacles should
be filtered out. To achieve that, we first apply a 19-23 kHz
band-pass filter to keep the desired frequency band and filter
out the background noise. There remain three main types of
signals in the received recording: (i) the direct path signal
directly travels from the speaker to the microphone; (ii) the
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Fig. 3: The spectrogram of six expressions in 50 milliseconds. The first row is from a woman without a mask, the second row
is from a man without a mask, and the third row is from the same man with a mask.

major echo signal is the mix of echoes from the facial contour,
which is the interest of FacER; and (iii) the noisy echo signals
are echoes from different obstacles in the environment because
of the multipath of reflected signals.

To remove the interference of the direct path signal, inspired
by AIM [33], we use a separate speaker and microphone to
record the direct transmission by positioning the devices in a
clean and quiet space. Therefore, we remove the direct path
signal from the received samples by minimizing ||S — ¢S4ll,
where S denotes the received samples, Sy denotes the pre-
recorded direct signals, and c is a scaling coefficient to achieve
optimal cancellation which is set as 0.9 in our experiments. In
this way, we remove the direct path signal from the speaker
to the microphone. Fig. 2 shows a segment of the raw signal
(in blue) and the processed signal (in orange) after filtering
out the background noise and the direct path signal noise.

Then, we proceed to remove the noisy echo signals. In
the FacER application scenario, a user is facing a phone, so
we assume that there is a relatively stable and static distance
between the phone and the user’s face. We consider filtering
out the noisy echo signals from the nearby obstacles at dif-
ferent distances. The FMCW provides distance measurement,
which is an important tool for differentiating among different
echoes when more than one source of reflection is received.
A comfortable distance between human eyes and the phone is
25—50 ecm [27]. Therefore, based on Eq. (1), we can calculate
the desired frequency shift as:

2RB
|Afl = “4)

Thus, |Af| is between 235 Hz and 470 Hz. We further
analyze the FMCW distance measurement resolution. Given
the minimum measurable frequency shift A f,,;, = 1/T, we
can compute the resolution d, that FMCW separates mixed

echoes as:
’UOAfmin-T _
2B N
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major echo signal corresponding to a single sample is 52
3.54 mm, where F is the sampling frequency 48 kHz.

= 4.25 cm. The resolution of the

Vo

B. Contrastive Attention-based Domain Adaptation

We use the Short-Time Fourier Transform (STFT) with the
Hann window to process the signal, which outputs the complex
amplitude, and we compute the absolute values of the STFT
values. The generated spectrogram is used as input for our
proposed model in Algorithm 1. Fig. 3 shows the spectrogram
of the segmented major echo signals of different expressions
from two volunteers. We can observe that, for the same person,
different expressions will yield different spectrograms.

However, we make two observations that would affect the
modeling performance. First, it is nearly impossible to entirely
remove noisy echo signals from different obstacles at various
distances in some scenarios. We set up the desired frequency
shift |Af| as 500 Hz in Fig. 3. However, there could be
minimal multipath changes caused by body motions or objects
between the face and the phone, which is hard to filter out
since the resolution d,, for FMCW to separate mixed echoes
is 4.25 cm. For example, the second row in Fig. 3 is from
a man without a mask, while the third row is from the same
man with a mask. We can observe subtle differences between
the corresponding spectrograms (e.g., “surprise”) in the two
rows. Considering that the image-based expression recognition
model can cope with various backgrounds around the face
in an image to extract the facial expression-related features.
Similarly, we aim to design the model to pay attention to the
acoustic facial expression features.

Second, normal ML models face the poor generalization
problem when there is a distribution shift between the training
and testing datasets [34]. For example, as shown in the first
and second rows of Fig. 3, for the same expression, different
people will have different ways of expressing facial emotions,
as manifested in the differences in the corresponding spectro-
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Fig. 4: The contrastive attention-based domain adaptation model for acoustic facial expression recognition.

grams. These differences will cause distribution shifts. There-
fore, we should align the training and testing data distribution
before training a classification model. Moreover, the model
should only require a limited amount of enrollment data to
improve its usability. Yet, it could be particularly challenging
to extract useful features that can identify expressions from
weak signals with limited acoustic samples.

To address these issues, we design the contrastive attention-
based domain adaptation model to extract consistent acoustic
facial expression features as shown in Fig. 4. The basic idea
for domain adaptation is to minimize the expression feature
representation distances across domains. However, it is chal-
lenging to gather enough data from a variety of populations
for deep learning models to extract robust facial expression
features. Therefore, we first propose to augment the dataset.

1) Data Augmentation: Data augmentation, which involves
adding modified versions of existing data or generating new
synthetic data from existing data, is a typical technique to
address the data deficiency problem. First, it can mitigate
the model overfitting problem when the original dataset is
relatively small. Second, contrastive learning learns discrimi-
native representations by bringing together positive pairs and
separating negative pairs. The different augmented views of
each sample can compose positive pairs that have the same
labels, which enhances the model’s discriminative ability.

We propose to use two methods for acoustic expression data
augmentation. First, we shift the acoustic expression signal
segment by the same distance. In accordance with the inverse
square law of sound propagation, the amplitude of the signal is
changed by a scale equal to the inverse square of the distance
(e.g., 0.3 meters). Second, for the generated spectrograms, we
produce different versions of the spectrogram by multiplying
the magnitudes of the spectrogram by a scalar. We generate the
scalar by sampling from a Gaussian distribution with the mean
being 0 and the standard deviation being 0.1. Considering
our scenario when a user is holding a smartphone, a small
device rotation at a fixed position creates negligible changes
in the signal due to the omnidirectional nature of speakers
and microphones, therefore, we only consider the changes in
the device positions for acoustic signal transformation. In this
way, we can grow and enrich our acoustic facial expression
dataset for contrastive external attention learning.

2) Pseudo Label Generation: A domain D = {X, P(X)}
includes the feature space X and marginal probability distribu-
tion P(X). If two domains are different, they have different X’
or P(X), but the label space is the same. Suppose we have a

source domain with a fully-labeled expression training dataset
Dy, and an unlabeled testing dataset D, is the target domain,
which has the same categories as the source domain. The
first problem is how to form the positive pairs from the same
category of D and D; when the labels in D, are unknown.
Inspired by DeepCluster [35], we generate pseudo labels
for unlabeled data in D, according to the highest category
probability. Specifically, we propose to use K-means clustering
to generate pseudo labels, re-train the current model and adjust
the noisy pseudo labels iteratively. For each iteration, we first
calculate the centroid for each class in the target domain:

(1) _ Extext 3(2¢) gt () 6
L ZrteXt (zt) ’ ©)

where c,(:) is the centroid for class k at the i4;, iteration,
5(z) = <=2E)__ g the softmax function that is used to
2 m €Tp(Zm)

output category probability. g;(z;) outputs the representation
of an acoustic expression sample z;, and z; = h(g(x;)) is
the linear transformed representation of x;. The centroids can
characterize the distribution of categories within the target do-
main. The pseudo labels are obtained via the nearest centroid:

Yy = arglifnin cos(gi(xt), ck), @)

where cos(+) is the cosine distance between the representation
embedding g:(z:) and the centroid embedding cj. As a result,
we can obtain pseudo labels for the target domain dataset and
compose the positive and negative pairs using both source
and target domain datasets. Then, we iteratively update the
model parameters by minimizing the loss function in Eq. (10)
described below.

3) Attention-based Expression Learning: As mentioned be-
fore, removing all noisy echoes is almost impossible. Thus,
the model should be able to distinguish the features of facial
expression echoes from the background noisy echoes. The self-
attention is widely used for learning robust features, but it has
quadratic complexity and it does not consider the potential
correlation among various samples. Multiple data samples
(0.1s per sample) are generated during each expression (about
1s). Capturing correlations among these samples can facilitate
the model to be focusing on the common and consistent
acoustic facial expression features.

To generate the facial expression representation z, as shown
in Fig. 4, we propose to use external attention [36] to focus
on important features and implicitly learn correlations among
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Algorithm 1: Contrastive Attention-based Cross Do-
main Acoustic Expression Representation Learning

Input: source dataset Dy, target dataset D;, epoch F,
iterations K per epoch, weight A, contrastive
attention-based model f

Output: source and target representations Z* and Z*

1 fore=11t E do

2 Calculate centroids in target domain using Eq. 6
3 Update pseudo labels for target data using Eq. 7
4 for k=11t K do
5 for each batch do
6 Extract features with f based on external
attention in Eq. 8
7 Compute L., for each batch from Dy
8 Compute L. from D, and D; using Eq. 9
9 Compute L..(0; Ds) + ALL(0; D, Dy)
10 end
11 Back-propagate and update 6 of model f
12 end
13 end
14 for each batch Xpuicn, do
15 Generate source domain expression representation
Zgatch = f(leatch) for DS
16 Generate target domain expression representation
Zlgatch = f(leatch) for Dy
17 end

18 return Z° and Z*!

all expression samples. Following symbols in Eq. (2), we first
compute the attention map A = QM by multiplying the
query vector () and the external learnable transposed key
matrix M, € R5*? Q is projected from a feature map
F € RN*4 where N is the size of feature elements, d and S
are hyper-parameters. We normalize the attention map A and
then multiply it with another external value matrix M,. M}
and M, are generated by additional linear layers, which can
be optimized by back-propagation during training on the entire
dataset. The attention-based feature map F,,; is as follows:

Fout = Norm(QM)M,,. (8)

In the end, we obtain the refined feature map with linear
complexity O(d - S - N), which is suitable for resource-
constrained mobile devices.

4) Feature Alignment for Domain Adaptation: Reasonably,
we assume that samples with the same label are closer to
each other in the feature space, while samples from different
categories are farther apart, no matter which domain they
come from. With the augmented dataset, pseudo labels, and
the attention-based learning model, we design contrastive
learning to minimize the domain discrepancy by aligning facial
expression features between the training and testing datasets.

Specifically, given an acoustic facial expression sample x4
from the source domain, and a sample x; from the target
domain, we minimize the distance between x4 and x; if two

samples are from the same class while maximizing the distance
between two samples from different classes. The output of
the model is domain-independent expression representations.
Following the supervised contrastive loss in Eq. (3), we define
the domain adaptation contrastive loss as follows:

-1
= Lm0

el pePs(yi)

exp(zi - 2L/7)
Pacr, exp(z - 2¢/T)’

(€))

where I; denotes the set of target samples in a batch, I is
the set of source samples, and Ps(y}) is a set of indices of all
positive samples from the source domain. A positive sample
means the label of the sample is the same as the pseudo
label of the target anchor sample z;. The domain adaptation
contrastive loss aligns the expression representation in the
target domain to the source domain. Finally, we define the
acoustic expression representation learning loss function as:

argmin L..(6; Ds) + AE@(G;DS7Dt), (10)
0

where L. is the standard cross-entropy loss applied on the
Dy, X is used to balance the two loss terms (0.5 in our
experiments), and 6 represents the model parameters.

Overall, the proposed contrastive external attention-based
acoustic expression representation learning model is presented
in Algorithm 1. After data augmentation, in each epoch,
we first generate pseudo labels for target domain acoustic
samples (lines 2-3). Then, we minimize the loss and back-
propagate to update the model f (lines 4-12). After training,
model f can align features for domain adaptation, and in turn
minimize the distribution shift. We use the trained model f
to generate the acoustic expression representations Z° and
Z*' (lines 14-17). Finally, we can train a classifier on source
domain representations Z°, and generate labels for the target
domain representations Z*. The proposed algorithm effectively
enhances the expression recognition model performance across
different users.

V. IMPLEMENTATION
A. Data Collection

We recruited 20 volunteers (16 males and 4 females) to
participate in the acoustic facial expression data collection
process. To guarantee the heterogeneity of collected facial
expressions, the recruited volunteers have different skin colors
and grow up in different regions of the world such as Asia,
North America, and Europe. Their ages range from 20 to 38.
The participants are allowed to wear glasses, a hat, and other
accessories during the data collection process. To simulate
different scenarios in real-life, we collect data at different
locations (e.g., office, dining hall, garden) with different back-
ground noise. For example, we collect data in an office with
people having conversations, online meetings, and computer
alarm beeping.

We show the six common facial expressions: anger, disgust,
fear, happiness, sadness, and surprise as examples at the begin-
ning of data collection. Then, a volunteer starts with a poker
face and performs their preferable styles of six expressions

Authorized licensed use limited to: Michigan State University. Downloaded on May 09,2024 at 19:43:20 UTC from IEEE Xplore. Restrictions apply.



Akx .

Fig. 5: A smartphone and a volunteer for data collection.

accordingly. Fig. 5 shows the example smartphone and a
volunteer during the data collection process. The volunteers
are allowed to hold the phones in their most comfortable
gesture while watching the smartphone screen. Considering
the necessity of wearing masks during the Covid-19 pandemic,
we also consider expression recognition in scenarios where the
participants are wearing disposable masks. For each expres-
sion, we collect about 5 seconds when the participants wear
masks, and another 5 seconds when they do not.

The acoustic facial expression collection process repeats 10
times for each expression per person with rest breaks during
the data collection process. An independent observer helps
record the label of each acoustic expression sample as the
ground truth. The whole data collection process takes about a
week intermittently. The collected dataset is over 1 GB in plain
text format. Finally, we get 20,535 samples with the sliding
windows segmentation, of which the window size is 0.25s. The
design consideration is that if the window size is too small,
it will be hard to reflect the integral process of facial muscle
movements. If the window size is too large, it will easily mix
instantaneous variations of different facial expressions.

B. Experimental Setup

We use two Android phones: Samsung Galaxy A21, and
OnePlus 8T to collect the acoustic signals. We develop the
app to emit and collect signals based on the LibAS [37]
and Chaperone [38], which provide a framework for acoustic
sensing applications. LibAS can simplify the necessary signal
processing procedures such as synchronization, which deter-
mines the start position of the sent signals in the received
audio. The sensing signal is introduced in Section IV-A, which
is a chirp signal modulated from 19-23 kHz. The app emits
the signal from the earpiece speaker of a smartphone.

We employ the SciPy library for signal processing. We use
ResNet-18 [39] as the backbone model for our contrastive
attention-based expression recognition model, which is imple-
mented with Pytorch. We train the model on TensorEX Ubuntu
20.04 Server with 256GB DDR4 memory, Intel(R) Xeon(R)
Gold 5218R 2.10GHz CPUs, and RTX A6000 GPUs.

VI. EVALUATION

In this section, we evaluate the impacts of multiple factors
(e.g., location, time, people, mask) on the performance of
FacER in recognizing different acoustic facial expressions.

A. User Dependent Evaluation

Case 1a. We first consider a simple scenario, where we can
collect and label acoustic data from a group of users. Our goal
is to recognize the facial expressions from this specific group
of users, namely mix testing. We split 80% of the whole dataset
as the training set and the remaining 20% as the testing set. We
only use the external attention-based ResNet-18 model without
cross-domain adaptation to implement classification. We use
the SGD with a momentum of 0.9. The learning rate is 0.1 with
a learning rate decay rate of 0.01. We show the performance of
FacER with an accuracy heat map in Figure 6a. As we can see,
the model can recognize each acoustic facial expression with
more than 91% accuracy. Besides, we implement the 10-fold
cross-validation, and the average testing accuracy is 94.3%
with a standard deviation of 0.4%. However, the results are
unsurprising because the training dataset and testing dataset
belong to the same distribution. As a result, the model can
easily fit in the dataset.

Case 1b. Next, we consider the impact of the environmental
factors on the performance of FacER. We test the model
performance on the data collected in three different locations,
i.e., office, dining hall, and garden. We repeat the leave-one-
place-out evaluation by training on data from two places and
testing on data from another place. We implement Algorithm 1
to extract feature representations, and then we use a linear
classifier with two linear layers network with hidden layer
sizes 1,024 and 256 to implement expression classification.

We compare the performance of FacER with two baselines:
(i) ResNet-18 [39], which is our backbone model trained with
cross-entropy loss without adopting attention; (ii) XHAR [34],
which is the adversarial training-based domain adaptation
method for human activity recognition. Considering adversar-
ial training is another major direction for cross-domain adapta-
tion, we choose it as the baseline. We adapt their methodology
to make it applicable for facial expression recognition.

We report the average accuracy, precision, recall, and F1
values across three locations in Fig. 7, which is a bar plot
on the polar axis. FacER achieves 89.8% average accuracy,
which is a bit lower than the mix testing method (94.3%).
The standard deviations of the accuracy of FacER, ResNet,
and XHAR from three leave-one-place-out evaluations are
0.017, 0.014, and 0.016, respectively. The results show that the
location causes the distribution shift and affects the model per-
formance because of the noise caused by different obstacles.
Nevertheless, the model still achieves high performance with
an F1 value of 90%, which is higher than the XHAR method
(82.6%). The result proves that FacER can learn consistent
and robust acoustic facial expression features even in a noisy
environment with various types of noises.

Case 1lc. We consider a more complex scenario that is
related to time variation. The consideration is that the same
facial expression may not be consistent over time. For exam-
ple, sometimes people may show a wide smile while other
times people may show a gentle smile to express happiness.
Therefore, to evaluate the time factor for acoustic facial
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Fig. 7: The bars of location factor evaluation.

expression recognition, we split the dataset into two subsets
according to the time. The first subset is the first 8 times of
data collection for each facial expression per person, which is
the training dataset. The second subset is the last 2 times of
data collection, which forms the testing dataset.

The results show that the time factor affects the model
performance. Under the time factor condition, the accuracy
of FacER is 90.3%. The precision and recall are 90.5%
and 90.3%, respectively. The model has slightly worse per-
formance (4% lower accuracy) than Case la, which shows
that the changes of the same expression over time indeed
degrade the recognition accuracy. Nevertheless, FacER can
still achieve high performance, which shows the efficacy of
the designed model in acoustic expression recognition. We
show the precision-recall score curve in Fig. 8. Precision is
tpfffp and recall is %, where ¢p means true positive, fp
means false positive, fn means false negative. The tradeoff
between precision and recall for various thresholds is depicted
by the precision-recall curve. The area in Fig. 8 is calculated
by the average precision (AP): AP = " (R, — R,—1)P,
where P, and R, are the precision and recall at the ny,
threshold automatically set by Scikit-plot [40]. For different
classes, FacER can achieve at least a 0.958 AP score. A high
precision-recall (area) score under the curve shows both high
recall and high precision, which indicates low false-positive
and false-negative scores.

B. User Independent Evaluation

Case 2. Now we consider a more general scenario where the
model is trained and tested on different sets of users. Different
people have different face geometries and behaviors. As a
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Fig. 8: The precision-recall curve of time factor evaluation.

result, they may produce distinct feature patterns. To evaluate
the performance of FacER in the user-independent scenario,
we use the dataset from 16 men as the training dataset and
that from 4 women as the testing dataset.

We first show the efficacy of the K-means model in
clustering the acoustic facial expression representations. We
randomly select 2,048 samples from the training dataset in
Fig. 9a and from the testing dataset in Fig. 9b, respectively. As
we can see, the K-means model can separate the six types of
expressions from both training and testing sets, which indicates
the learned representations contain consistent and distinctive
features. During the iterative training process, the pseudo
labels of the testing data can be accurately updated. Therefore,
the proposed model can effectively compose positive and
negative pairs for contrastive attention learning.

The accuracy heatmap is shown in Fig. 6b, and the average
accuracy is 85%, which is lower than the results from Case la
because of the user expression differences. We notice that men
and women have different ways of expressing “disgust”, which
causes FacER to only achieve 78.7% accuracy. But the result
shows that men and women have high similarity in expressing
“surprise”, which achieves 90.5% accuracy.

To evaluate the efficacy of the domain adaptation of FacER,
we compare FacER with the three baselines: XHAR [34],
SonicFace [3], and ResNet [39] as shown in Fig. 10. XHAR
and ResNet are set up as in Case lb. SonicFace uses both
FMCW and pure tone signals to extract different features. It
focuses on tracking the movement of facial components such
as the eye, eyebrow, and cheek, and it uses 1D convolution for
signal processing. In contrast, we regard the spectrogram of
the received echos as an image, which is the instantaneous
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(a) Clustering on the training set. (b) Clustering on the testing set.

Fig. 9: K-means clustering on 2,048 sampled representations,
which are processed with TSNE dimension reduction.

static facial expression. Different expressions will generate
different spectrogram features as the different pixels of facial
expression images. Therefore, we use the 2D convolution.
Due to the key difference in the applied signals, we directly
report their best performance in Fig. 10. For SonicFace, the
average accuracy of the intra-session classification is 78.6%,
while the best accuracy of the user-independent model with
calibration is 72%. For the user-independent Case 2 scenario,
FacER can achieve 85% accuracy and 85.2% F1 value. The
adversarial training-based XHAR method only achieves 79.1%
accuracy and 78.7% F1 value. The results show the superior
performance of our proposed contrastive external attention-
based representation learning method, as it helps extract robust
and accurate acoustic facial expression features.

C. Mask Factor Evaluation

Case 3 and 4. Masks are obvious obstacles to camera-based
facial expression recognition methods. It is very common
for people to wear masks during the Covid-19 pandemic.
We investigate the performance of FacER when people wear
masks. As mentioned before, half of the dataset is from
volunteers wearing masks (mask dataset), and the remaining
half is from volunteers without wearing masks (plain dataset).
We train FacER on the plain dataset and test on the mask
dataset, and the result is shown in Figure 6¢c. The average
accuracy is 87.2%. Then, we train FacER on the mask dataset
and test on the plain dataset, and the result is shown in
Figure 6d. The average accuracy is 84.9%. As we can see, the
mask has a noticeable impact on the performance of FacER.

Another interesting finding is that FacER achieves the
highest accuracy of 90.8% about the “fear” expression when
training on the plain dataset, while it achieves the lowest
accuracy of 79.5% about “fear” when training on the mask
dataset. This can be attributed to the fact that the mask itself
will generate some echoes back to the microphone, which
will cloud the echoes from the facial expressions. It is harder
for FacER to learn robust “fear” features when people wear
masks. Nevertheless, for the “happiness” expression, people
have a larger facial muscle movement, which could trigger
the movement of masks. As a result, it can achieve 88.7% and
88.5% accuracy when testing on the mask and plain datasets,
respectively. Overall, in different mask factor scenarios, FacER
can achieve comparable accuracy with Case 2. The results
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Fig. 10: The comparison across different models.

confirm the cross-domain adaptation ability of our proposed
contrastive attention-based representation learning method.

VII. DISCUSSION

Data. FacER is a data-driven acoustic facial expression
recognition system based on the contrastive attention-based
deep learning model. The quality and quantity of the acoustic
sensing data are essential to the performance of FacER. In
the future, we will collect more data from female users
and underrepresented groups to reflect the diversity of facial
expressions. We will also consider other forms of emotional
expressions such as hand gestures. Moreover, we will collect
data on facial expressions that gap a longer time such as
after one week for the time factor evaluation. We will also
try applying generative models to synthesize more data.

Model. In this work, we mainly consider the scenarios
where the users hold the phone at a distance of 20-50 cm.
In the future, we will investigate the performance of FacER
when the distance between the user and the phone is longer.
We will also study how to determine the start and end of an
expression, so we can effectively segment acoustic signals to
extract facial expressions for inference in real-time.

System. We understand the design difference between dif-
ferent phone hardware, especially its impact on the direct path
from the speaker to the microphone. We will evaluate the effect
of different smartphones on ultrasound signal transmission in
the future. Besides, many other real-world impact factors such
as slight hand shaking, and the orientation of a phone should
be taken into consideration. Furthermore, we will continue
optimizing resource usage on mobile devices and mitigate the
security and privacy concerns of mobile sensing data.

VIII. CONCLUSION

In this paper, we designed FacER, an acoustic facial expres-
sion recognition system using a smartphone earpiece speaker
and microphone. To enhance the accuracy and robustness of
FacER, we proposed a contrastive external attention-based rep-
resentation learning model to learn robust expression features
across different users in various noisy scenarios. Real-world
experiments show that FacER achieves expression recognition
with more than 85% accuracy even when the users are wearing
a mask, a new norm during the Covid-19 pandemic.
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