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ABSTRACT
Accurate measurements of soil macronutrients (i.e., nitrogen, phos-
phorus, and potassium) and moisture play a key role in smart agri-
culture. However, existing commodity soil sensors are often expen-
sive and the achieved accuracy is unsatisfactory. To address these
issues, we present SoilCares, a low-cost soil sensing system en-
abling accurate and simultaneous monitoring of the concentration
levels of soil moisture and macronutrients. SoilCares overcomes key
challenges of accommodating diverse soil types and soil textures by
introducing a novel membrane-based scheme. For moisture sensing,
SoilCares leverages the multi-modal fusion of RF and NIR signals
to significantly increase the sensing accuracy. Through delicate
hardware design, we enable negligible-cost sensor data transmis-
sion using the existing sensing hardware, building up a complete
end-to-end soil sensing system. SoilCares is cost-effective ($63.5),
portable (0.5 kg), and low-power (236 𝜇W), making it suitable for in-
situ deployment. On-site experimental results show that SoilCares
achieves high macronutrient sensing accuracy with a low RMSE
of 0.138, and extremely low moisture estimation error of 1%, out-
performing the state-of-the-art research and expensive commodity
moisture sensors on the market.
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1 INTRODUCTION
Precision agriculture, which refers to precise water, nitrogen, phos-
phorus, and potassium control in different farm regions, depends

∗Both authors contributed equally to the paper.

on accurate soil moisture and macronutrient sensing. Proper fer-
tilization enhances grain yields, while overusing fertilizers can
lead to pollution of aquatic systems [74] and groundwater [15].
Moreover, proper soil moisture level facilitates plant absorption
of essential nutrients, and precision irrigation has been proposed
to save precious water resources and enable sustainable agricul-
ture [24, 27, 33, 39]. Therefore, the ability to monitor the concen-
tration levels of macronutrients and moisture has become a vital
component in smart agriculture.

In recent years, several low-cost soil moisture sensing systems
have been proposed, and they adopt various RF signals, including
Wi-Fi, LoRa, LTE, and RFID techniques [13, 20, 22, 70]. However,
these systems still lack the critical fertilizer sensing capability. The
fundamental drawback that prohibits them from accurate fertilizer
sensing is that RF waves with centimeter-level or even millimeter-
level wavelengths are too coarse-grained to detect the variation
of nutrients. In comparison, Vis-NIR (visible–near-infrared) waves
have a nanometer wavelength, which is at the same scale as nu-
trient molecules and manifests unique physical properties of ab-
sorption/reflectance. As a result, Vis-NIR (VNIR) reflectance spec-
troscopy has become a prevalent method for analyzing soil prop-
erties [50, 55, 59]. However, this method requires a high-end spec-
trometer (∼$20,000 [8]) for generating a super-high-resolution re-
flectance spectrum and extracting nutrient-relevant information,
which also introduces significant maintenance overhead. Moreover,
it requires intricate pre-processing, such as grinding and drying,
to mitigate the impacts of soil moisture, particle size, and other
environmental factors. This has hindered the wide deployment of
on-site fertilizer sensing.

To address the issues of reflectance spectroscopy while still lever-
aging the advantages of VNIR sensing, low-cost LEDs and pho-
todiodes (PDs) are emerging as viable alternatives in agriculture
sensing [5]. Combinations of LEDs can cover the discrete spectrum
range from VIS to NIR, and photodiodes can serve as receivers of
the reflected light. These devices are cheap, portable, and adaptable
to various working environments with fewer restrictions. However,
there are three major challenges associated with low-cost soil sens-
ing systems. First, pre-processing steps like drying and grinding are
critical for soil sensing due to significant influences of soil moisture
and particle size on estimating other soil properties [49–51, 59, 72].
This is because soil moisture significantly affects the accuracy of
macronutrient sensing. We need to totally remove it (i.e., drying) or
estimate it accurately to remove its effect on macronutrient sensing.
However, current low-cost RF-based solutions [13, 20, 22, 70] are
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Figure 1: SoilCares system for macronutrients (N, P, K) and
soil moisture measurements, with negligible-cost communi-
cation capability

not able to achieve highly-accurate (<2%) soil moisture estimation.
Without the grinding step, the large and random soil particle size
also introduces unintended reflectance surfaces, affecting the accu-
racy of reflectance measurement for macronutrient sensing. Second,
simultaneously sensing multiple soil macronutrients (i.e., nitrogen,
phosphorus, and potassium) is challenging since they interfere with
each other. Third, long-range and low-power communication is
essential for practical deployment in vast farm fields. However,
incorporating the communication capability into existing sensing
hardware without incurring additional hardware and energy costs
is challenging.

To address these challenges, we propose SoilCares, a generalized
low-cost sensing solution (with the basic idea illustrated in Fig. 1)
by leveraging the fusion of VNIR reflectance spectroscopy and
RF technique to achieve in-situ soil moisture and macronutrient
sensing. First, we design a novel denoising module to eliminate
confounding factors (i.e., moisture and soil particle size) through
a custom-designed membrane that removes the effect of particle
size and a mapping function to eliminate the influence of moisture
on soil macronutrient sensing. Second, we propose a multi-modal
system that combines LED and RF sensing to further improve the
accuracy of soil moisture sensing. Third, we develop an LED array-
based system that can accurately sense the individual concentration
levels of nitrogen (N), phosphorus (P), and potassium (K). Finally, we
enable LoRa transmission by programming the clock generator of
the computing unit in existing sensing hardware and outputting the
generated clock signal through IO ports, mimicking the function
of an ordinary transmitter. These approaches make SoilCares a
complete end-to-end system ready for real-world deployment.

We implement the SoilCares prototype in a small form factor
using cheap ($63.5) and low-power (236 𝜇W) components. Exten-
sive real-world experiments show that SoilCares achieves the root-
mean-square error (RMSE) of 0.144, 0.147, and 0.125 for N, P, and K
concentration measurements, respectively, and an extremely low
error of 1% for moisture estimation. To the best of our knowledge,
SoilCares is the first system demonstrating the capability of low-
cost, accurate, in-situ soil moisture and macronutrient sensing. The
main contributions of SoilCares are as follows:

• We propose to monitor soil moisture and soil macronutrients
at the same time leveraging both RF and LED signals.

• We develop a denoising module to eliminate the effect of
confounding factors. Specifically, we employ a novel mem-
brane design to remove the effect of particle size and soil
type. We also obtain the mapping function to remove the
effect of soil moisture on macronutrient sensing.

• We propose a multi-modal model to combine VNIR and RF
sensing for highly accurate soil moisture estimation and
eventually remove the effect of moisture on macronutrient
monitoring.

• We enable negligible-cost LoRa communication with delicate
software design on existing sensing hardware, achieving a
transmission range of 80 m and a coverage over 20, 000𝑚2.

• We design and implement a compact, low-cost prototype.
Extensive experiments in the lab and in the wild show that
SoilCares achieves an average root-mean-square error of
0.138 for macronutrient sensing under varying conditions
including different soil types/mixtures and various moisture
levels. The proposed soil moisture sensing module achieves
1% mean absolute error, outperforming the state-of-the-art
research [13, 20, 22] and expensive commodity moisture
sensors on the market.

2 BACKGROUND
2.1 NIR-based Soil Macronutrient Sensing
The Beer-Lambert law [46] describes the attenuation of light inten-
sity as it traverses through a substance, linking it to the material’s
constituent. This law is frequently utilized in chemical analysis to
evaluate the concentration of chemical components capable of light
absorption and scattering [48]. As the light of a specific spectrum
passes through substances such as N, P, and K, it provokes the
molecular bonds of each component to vibrate. Due to its unique
molecular structure and bond, every chemical species generates
a distinctive absorption spectrum, which can be used for element
analysis [26, 64]. The absorbance of substance 𝐴 can be derived in
as below [65]:

𝐴 = log( 𝐼0
𝐼𝑟
) = 𝛾ℓ𝑐, (1)

where 𝐼0 is the emitted light intensity, 𝐼𝑟 is the received light inten-
sity after propagating through the optical length ℓ , 𝛾 is the molar
attenuation coefficient, and 𝑐 is the concentration of the attenuating
species.

2.2 RF-based Soil Moisture Sensing
Volumetric water content (VWC) 𝜃𝑣 , the volume of water per unit
volume of soil, is a common metric for soil moisture measurement.
Prior studies [34, 62, 67] have revealed the dependence of the di-
electric constant 𝜖 on VWC. The empirical formula to quantify the
relationship between 𝜖 and 𝜃𝑣 [67] is depicted below:

𝜃𝑣 = 0.1138
√
𝜖 − 0.1758. (2)

Based on Eq. 2, RF-based soil moisture sensing has been pro-
posed [20]. By measuring the RF wave propagation speed 𝑐 in the
target soil, the dielectric constant can be obtained as

√
𝜖 = 𝑐0/𝑐 .

where 𝑐0 denotes the RF signal propagation speed in the air. So, soil
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Figure 2: RF propagation path across soil and air

moisture can be estimated by measuring the RF signal propagation
speed in the soil.
TDoF-based soil moisture sensing. Conventional RF solutions
such as Time Domain Reflectometry (TDR) radar [38] estimate the
RF wave speed based on accurate Time-of-Fight (ToF) measure-
ments, which, however, require ultra-wide bandwidth, escalating
the hardware cost. To enable affordable solutions, Time-Difference-
of-Flight (TDoF) based approaches have been proposed [13, 20, 22].

As shown in Fig. 2, the same RF signal is transmitted by two
antennas through soil and air and eventually received at the receiver.
Since the distance between transmitter and receiver is much larger
than twice the wavelength (e.g. 33 cm for LoRa at 915 MHz), the
propagation paths can be considered as parallel [53]. The TDoF of
the two paths can then be obtained as:

Δ𝑡 =
Δ𝑑3 + Δ𝑑2

𝑐
− Δ𝑑1

𝑐0
=

Δ𝑑3 + Δ𝑑2 − Δ𝑑1√
𝜖

𝑐
. (3)

According to Snell’s law [73] and the geometric relationship, we
have:

sin𝜃1
sin𝜃2

=
𝜆1
𝜆2

=
𝑐

𝑐0
=
√
𝜖,

sin𝜃1
Δ𝑑1

=
sin𝜃2
Δ𝑑2

, (4)

where 𝜆1 and 𝜆2 are the RF wavelength in the air and in the soil,
respectively.

With Eq. 4, the term Δ𝑑2 − Δ𝑑1/
√
𝜖 in Eq. 3 is canceled out, and

the relationship between dielectric constant 𝜖 and TDoF Δ𝑡 can be
obtained as:

𝜖 =

(𝑐0Δ𝑡
Δ𝑑3

)2
=

( 𝑐0Δ𝑡
Δ𝑑 cos𝜃2

)2
. (5)

In Eq. 5, Δ𝑑 denotes the spacing between two antennas, which
is predefined. The incident angle 𝜃2 does not need to be known
and can be approximated with a constant value [13]. Therefore, the
soil moisture 𝜃𝑣 could be estimated from the TDoF Δ𝑡 given Eq.
2 and 5. TDoF Δ𝑡 can be accurately calculated by measuring the
phase difference Δ𝜙 of the received signals transmitted from the
two antennas [20, 22]:

Δ𝑡 =
Δ𝜙

2𝜋 𝑓𝑐
, (6)

where 𝑓𝑐 denotes the carrier frequency of the RF signal.

3 SOILCARES DESIGN
In this section, we first describe the overview of SoilCares illustrated
in Fig. 3, followed by the four design components. The first compo-
nent involves techniques to eliminate the impact of soil moisture
and particle size in macronutrient monitoring, allowing SoilCares
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Figure 3: Overview of SoilCares: in-soil sensing node (left)
and analyzer + negligible-cost controller (right)

to operate outside laboratory scenarios. Second, we present multi-
modal soil moisture monitoring, combining RF and NIR sensing.
With the multi-modal fusion, we enhance the accuracy and reli-
ability of soil moisture sensing and further improve the sensing
accuracy of macronutrients by eliminating the significant effect of
moisture. Third, we address the monitoring of soil nitrogen, phos-
phorus, and potassium by designing a cost-effective LED-PD array.
Last, negligible-cost LoRa transmission is realized on the existing
sensing hardware, facilitating real-world deployments.

3.1 Elimination of Confounding Factors for Soil
Macronutrients Sensing

Recent studies have demonstrated the potential of macronutrient
monitoring using VNIR optical systems, thanks to the rich soil spec-
tral information contained within this spectrum [51, 55, 64]. Most
of these studies, however, are predominantly confined to labora-
tory environments due to the requirement of pre-processing steps
such as drying and grinding. These steps are crucial for mitigating
the influence of soil moisture and particle size on the reflectance
spectroscopy of soil samples [51, 55]. Soil moisture impacts the ab-
sorption spectra of soil elements, and different particle sizes lead to
inconsistent reflectance, resulting in varying levels of accuracy [49–
51, 59, 72].

We introduce a module to eliminate noise from soil moisture and
particle size. To tackle the issue of varying soil particle sizes, we
employ a membrane as depicted in Fig. 10(g). The membrane acts as
an exchange platform, absorbing moisture and macronutrients until
the equilibrium state is reached, i.e., themoisture andmacronutrient
levels are the same in the membrane and in the soil. Compared to
directly measuring the moisture and macronutrient levels in the
soil, the membrane presents a surface with more evenly distributed
moisture and macronutrients, allowing for more accurate and stable
measurements. Instead of selecting irregular soil particles as the
surface for reflectance, this membrane absorbs macronutrients and
water from the soil and provides a uniform surface for VNIR light
reflectance measurements. Since the membrane is made of Poly-
Vinylidene-Fluoride-co-Hexafluoropropylene (PVDF-co-HFP), it
has minimal impact on Radio Frequency (RF) signals. We describe
the membrane manufacturing details in Sec. 4.
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To accommodate the noise caused by soil moisture, we break
down the spectral absorbance 𝐴𝑖 of the soil sample at the 𝑖𝑡ℎ wave-
lengths into three subcomponents as illustrated in Eq. (7):

𝐴𝑖 = 𝐴𝑡𝑖 +𝐴𝑚𝑖 +𝐴𝑜𝑖 , (7)

where 𝐴𝑡𝑖 is the spectral absorbance of the target macronutrient,
𝐴𝑚𝑖 is the absorbance of soil moisture content, and 𝐴𝑜𝑖 is the ab-
sorbance of other elements. Given that the water component sig-
nificantly influences the absorption spectrum at 1450 nm due to
the O-H bond’s vibration [7, 11, 41, 44], we establish a mapping
function 𝜙 (). This function links the absorbance value at 1450 nm,
represented as 𝐴𝑚1450, to each 𝐴𝑚𝑖 at various soil moisture levels.

By eliminating the mapped component 𝜙(𝐴𝑚1450) from the total
absorbance 𝐴𝑖 at the 𝑖𝑡ℎ wavelength, we obtain the remaining
absorbance 𝐴𝑟𝑖 in Eq. 8:

𝐴𝑟𝑖 = 𝐴𝑖 − 𝜙𝑖 (𝐴𝑚1450) = 𝐴𝑡𝑖 +𝐴𝑜𝑖 . (8)

Subsequently, the concentration values 𝑦 and the absorbance
𝐴𝑟𝑖 are projected into a latent space using Least Squares Support
Vector Regression (LS-SVR) as:

𝑌 =

𝑘∑︁
𝑗=1

𝛼 𝑗 𝑓 (𝐴𝑟𝑖 ) + 𝑏2, (9)

where 𝑌 represents the projected concentration values 𝑦 in the
latent space, 𝑓 () is the linear function that projects the value of𝐴𝑟𝑖

into a new latent space, 𝑘 is the total count of new latent variables
based on the original number of wavelengths 𝑛, 𝛼 𝑗 represents the
loading vector for the latent variable 𝑓 (𝐴𝑟𝑖 ), and 𝑏2 is the bias
of the new variable in the latent space. The initial absorbance of
other elements, denoted as 𝐴𝑜𝑖 , exhibits inconsistent trends across
different concentration levels, and its magnitude is substantially
lower than the absorbance of the target macronutrient, 𝐴𝑡𝑖 . The
impact of unrelated variables is further diminished through the
projection process, resulting in a reduced amplitude. Consequently,
we can disregard the value of 𝐴𝑜𝑖 in Eq. 7 and approximate the
value of 𝐴𝑟𝑖 to 𝐴𝑡𝑖 in Eq. 9.

3.2 NIR-RF-based Soil Moisture Sensing
While both NIR and RF measurements can be used for soil mois-
ture estimation, they are prone to errors caused by environmental
factors. Specifically, NIR measurements can be affected by soil gran-
ularity and porosity [10, 64]. RF-based soil sensing is biased by
uneven surfaces and obstacles such as stones [13, 22]. Interestingly,
the factors affecting NIR and RF sensing are orthogonal, which
facilitates fusing NIR and RF sensing for better performance.

The learning-based sensing techniques [32, 61, 68, 69, 71] have
been widely studied. We explore the characteristics of both NIR and
RF modalities and propose a multi-modal moisture sensing model.
Specifically, we use the raw measurements, i.e., signal phase from
RF receivers, and NIR reflectance from photodiode as input features
to train the machine learning model. The obtained model is then
used to predict soil moisture, which efficiently mitigates the bias
from each individual modality and achieves higher accuracy than
either of them.

For NIR-based moisture sensing, we use an LED transmitting
1450 nm light with a photodiode receiver since water molecules

Table 1: Mean absolute error of moisture level estimation
using different machine learning models

Categories ML Method Soil 1 Soil 2 Soil 3 All

Linear Ridge 1.37 1.33 2.83 2.11
LS-SVR 1.21 1.33 2.49 1.80

Basic nonlinear Polynomial 1.37 1.33 2.47 2.11
Proximity based Nearest Neighbors 1.07 1.18 1.66 1.39
Probability based Gaussian Process 3.66 2.48 4.10 3.76

Tree-structured Decision Tree 0.66 0.95 1.36 1.26
Random Forest 0.88 0.90 1.42 1.03

Neural Network 1 layer 2.89 1.80 4.09 2.35
2 layers 1.90 1.77 3.78 2.36

Dimensionality
Reduction PCR 2.15 1.70 3.53 2.11

majorly absorb 1450 nm light waves [47]. NIR reflectance manifests
a monotonic empirical relationship [41, 42] with the soil moisture
level. For RF sensing, we use a LoRa transmitter with a single-in-
dual-out RF switch to enable two-antenna transmission. By switch-
ing channels within a chirp, we see a sudden phase jump due to the
propagation path difference between two antennas, thus enabling
TDoF sensing at the receiver side. The RF dielectric permittivity
change due to different soil moisture levels is nonlinear based on
Eq. 2. Consequently, the fusion task is modeled as a monotonic
regression problem with two independent features.

To minimize the latency, we develop a fusion model based on
small-sizemachine learningmodels instead of deep neural networks.
Specifically, we compare ten machine learning models, including
six linear and nonlinear models, three ensemble learning methods,
and a dimensionality reduction method. The architecture of both
1-layer and 2-layer neural networks are determined by grid search
on our collected dataset. The training dataset comprises around 600
soil samples, including three soil types across 5-50% soil moisture
levels. We used 6-fold cross-validation in the training. The 2-layer
neural network has two inputs, i.e., NIR reflectance and RF signal
phase, ten neurons for each of the two hidden layers along with
ReLU activation, and one output of the soil moisture estimation.
The 1-layer neural network has the same inputs/output and 50
neurons in the hidden layer. Adam Solver is used for both neural
networks, with a constant learning rate of 0.001.

Table 1 shows the mean absolute error of soil moisture level
estimation across three soil types (see Sec. 5.2 for detailed compari-
son) and their combinations. The Decision Tree and Random Forest
methods outperform others. Decision Tree achieves the highest
accuracy on a single soil type but performs not as good as Random
Forest considering all soil types. It indicates that Decision Tree
is more prone to overfitting. Thus, we choose the Random Forest
model for multi-modal fusion, and it achieves much higher accu-
racy (an error of 1.03%) than the high-end commodity soil sensor
[3] (an error of 2.54%). Sec. 5.3.1 will present more evaluation on
other practical considerations.

3.3 Spectral Channel Selection for Soil
Macronutrient Sensing

Having addressed the interference of soil moisture and particle size
on soil macronutrient sensing, the subsequent challenge we face
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is to simultaneously determine the concentration levels of multi-
ple macronutrients [5, 50, 59]. In SoilCares, we design a low-cost
LED array to address the challenge. Specifically, we employ three
spectral regions to detect N, P, and K concentrations separately. We
utilize seven LEDs at 850, 950, 1150, 1200, 1300, 1550, and 1650 nm
for N monitoring. We employ four LEDs at 400, 460, 470, and 525
nm for K monitoring. We utilize four LEDs at 620, 640, 660, and
720 nm for P monitoring. The selection of these spectral regions is
strategically made to optimize the light attenuation by the target
nutrient while limiting the impact of light attenuation by other
nutrients [5, 28, 30, 49]. Fig. 4 illustrates the absorption properties
of the target macronutrients N, P, and K at the selected wavelengths.
We observe that the absorption of the targeted element is at least
three times the absorption of other macronutrients and signifi-
cantly more distinctive at the chosen wavelength, indicating the
effectiveness of the chosen spectrum on soil macronutrient sensing.
Fig. 5 shows the placement of the LEDs, photodiode, membrane,
and soil, where the LEDs are placed in a circle with the photodiode
positioned at the center.

3.4 Negligible-cost LoRa Transmission
The hardware of SoilCares consists of two main subsystems: RF-
VNIR sensing node in soil and remote controller module. We built
the controller module with a low-cost RF receiver RTL-SDR ($16)
and a Raspberry Pi Zero ($5). To trigger the operation of the sens-
ing node in the soil, an extra transmitter is required, which would
increase the hardware cost. Instead, we propose to exploit exist-
ing hardware to enable negligible-cost LoRa signal transmission

914.949

Freq (MHz)

915.052

915.0004 GHz

Figure 7: Illustration of frequency resolution problem

capability with delicate software programming. The key idea is
to leverage existing RF-band signals in the current hardware for
transmission. Fortunately, the Raspberry Pi has a programmable
clock generator to drive its CPU up to 1 GHz, and the generated
clock signal can be output to general-purpose input/output (GPIO)
ports [2].
Fine-grained frequency control. Although sweeping the fre-
quency to create chirp signals is straightforward, precise frequency
control becomes the major challenge due to hardware limitations.
The clock generator in Raspberry Pi is based on a 4GHz clock [54]
and generates the target frequency through dividing the 4-GHz
clock by a positive real number. The number is composed of a 12-bit
integer part and a 12-bit fraction part [2]. Therefore, we can not
obtain continuous target frequency due to the limited resolution. As
shown in Fig. 7, for a 915 MHz channel with 125 kHz bandwidth, we
can get only three discrete frequency points in the range by tuning
the least significant bits, which is far from enough to generate a
chirp signal.

To enable fine-grained frequency sweeping, we leverage a basic
concept of signal processing: the instantaneous frequency is the
time-domain derivative of the instantaneous phase:

𝑓 (𝑡) = 1
2𝜋

𝑑𝜑 (𝑡)
𝑑𝑡

. (10)

We further derive that the instantaneous frequency can be tuned
by adjusting the “speed” of phase rotation, i.e. , the accumulated
phase rotation in a unit time. For example, we may quickly switch
between the two discrete frequency points, 915 MHz and 915.052
MHz, half by half in a unit time. In this case, the accumulated phase
rotation would equal that from a single-tone signal at the middle
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frequency, 915.026 MHz. By adjusting the ratio of the two discrete
frequencies, we obtain the target “fractional” frequency in the LoRa
frequency band (902-928 MHz), as shown in Fig. 8. To eliminate the
spurs due to periodic switching, we randomize the switching order
while keeping the ratio of the two frequencies not changed. As a
result, the spurs are eliminated, and we obtain a clean single-tone
wave.
Frequency harmonics reduction at GPIO. Fine-grained fre-
quency control is achieved with randomized frequency switching.
However, the GPIO port of the Raspberry Pi is digital, i.e., it can
only output “0” or “1”. In consequence, the output signal from the
GPIO port is a square wave, which is the combination of the target
915 MHz wave and harmonics at 1830 MHz, 2745 MHz, etc. The
unwanted harmonics at 1830 MHz and 2745 MHz fall in the 3G and
4G bands, while unlicensed transmission can cause legal issues. A
915 MHz bandpass filter is thus necessary after the GPIO output.
Commodity 915 MHz bandpass filter is usually tens to hundreds of
dollars [19], which is higher than the total cost of our system. To
meet the requirement of a negligible-cost transmitter, we design a
printed hairpin filter ($0.5, see Fig. 9) [12] without any RF compo-
nents to enable a low cost, which costs less than 1% of a commodity
counterpart [19] and incurs only 1.3 dB more loss. It is a 2-layer
PCB filter (the size of the PCB is 98 mm by 60 mm) with the base
material of FR4. The thickness of the PCB board is 1.6 mm, and the
outer copper weight is 1 oz.

4 IMPLEMENTATION
This section presents the implementation details for the proposed
SoilCares prototype. The total cost of SoilCares is $63.5, whereas
the high-end commodity soil sensor costs more than $500 [3], not
to mention that SoilCares is capable of measuring the individual
concentration of macronutrients while the commodity counterparts
only provide the overall estimation.
Membrane.Wemanufacture the membrane using Poly-Vinylidene-
Fluoride-co-Hexafluoropropylene (PVDF-co-HFP) with a number-
average molecular weight (Mn) of 130 kg/mol and a weight-average
molecular weight (Mw) of 400 kg/mol. Our membrane design has a
thickness of about 100 microns, and the appearance of the mem-
brane is shown in Fig. 10(g). The swelling ratio, which measures the
change in the membrane’s size between wet and dry states, is an
indicator of physical stability [25]. Our membrane design exhibits
a 12.5% swelling ratio at 25 degrees Celsius, signifying that the
membrane retains its shape well when exposed to moisture [25, 40].

Additionally, the impact of minor size variations can be effectively
mitigated by considering the mapping relationship between the
swelling ratio and soil moisture. The dimensions of the membrane
can be adjusted based on needs. We use a circular membrane with
a diameter of 41 mm for the VNIR-based soil sensing and a rectan-
gular shape with 100 mm × 100 mm for soil moisture sensing. Both
membranes are identical in composition, and the cost is negligible.

The membrane used in the experiment must have a smooth, flat
surface and uniform thickness to guarantee that the VNIR signals,
regardless of their optical paths, are uniformly reflected by the
membrane. Variations in thickness can introduce additional noise
into the system, negatively impacting the accuracy of predictions
related to soil moisture and macronutrients. Furthermore, physical
damage to the membrane, whether during the manufacturing or
use process, will impair the overall performance of the system.

The durability of the membrane is influenced by its surrounding
environment. In a farm environment, a membrane made from PVDF
demonstrates remarkable resilience against destructive substances
like acids [60]. While strong bases and extremely high temperatures
may impair its function, such conditions are rare in agricultural
soil. The membrane can remain effective for more than five years
in the lab and 18 months in the wild. Note that during the growing
season, the membrane can be taken out and replaced if it suffers
physical damage in the soil.
VNIR sensing module. We utilize an Arduino UNO microcon-
troller to drive the VNIR transceiver ($6) shown in Fig. 10(c). The
PCB board consists of an amplification circuit and a multiplexer
control circuit. The amplification circuit, employing an LM358P
amplifier, amplifies the photodiode’s voltage changes by a factor of
ten. The multiplexer, a CD74HC4051E type 8:1 device, can control
the LED’s alternating on/off pattern. Fig. 10(c) illustrates the config-
uration of our PCB board design, where two LED arrays are placed
in two circular patterns around the Vis- and NIR- photodiodes. Fig.
10(d) demonstrates the assembly of our VNIR-based sensing module.
The light produced by the LED is reflected off the membrane and
detected by the photodiode.
RF sensing node. Fig. 10(a) shows the RF sensing node, including
a commodity LoRa transceiver board based on Arduino UNO board
with Dragino LoRa shield [21] ($24), and an RF switch HMC849 [17]
($4). LoRa transmission is enabled using an open-source Arduino
library [9]. We modify the timer codes of the library to enable the
antenna switching function during transmission to support TDoF
sensing with two transmitter antennas.
Remote controller. Fig. 10(b) shows the remote controller with
a Raspberry Pi zero ($5) as the backend. We use amateur radio,
RTL-SDR ($16), with an open-source library [56] to receive the
raw LoRa signal for the sensing node. The collected raw data is
processed with Python to obtain the moisture and macronutrient
concentration levels. To control the sensing node remotely, we have
the transmitter part consisting of another 915 MHz antenna, the
customized filter, and our codes running in the Raspberry Pi. The
customized filter ($0.5) is connected to the Raspberry Pi to avoid
illegal out-of-band signal leakage.
Power consumption. To support long-term deployment without
replacing the battery, the in-soil sensing node is set to sleep mode
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Figure 10: Implementation of SoilCares prototype.

whose power consumption is only 35 𝜇W. In the active mode, the
Arduino UNO board consumes around 26 mW after removing un-
used components on the board. The VNIR board powers one LED
and one photodiode at a time to measure the reflectance of the
corresponding wavelength. Each measurement takes one second,
and all measurements take 16 seconds with an average power con-
sumption of 11 mW. After VNIR measurements, the LoRa shield is
powered on for one second to transmit the VNIR reflectance values,
whose power consumption is 100 mW. By applying the default
setting of the commodity sensor (measured once per hour), the
average power consumption becomes 236 𝜇W, i.e., a common 5V
2250 mAh Lithium Ion Battery can provide a five-year battery life
for SoilCares.

5 EVALUATION
In this section, we initially introduce the three evaluation metrics
that will be utilized. This is followed by a detailed presentation of

both in-lab and on-site experiments, which focus on monitoring soil
moisture, nitrogen (N), phosphorus (P), and potassium (K) under a
diverse range of experimental settings.

5.1 Evaluation Metric
For the soil moisture experiments in Sec. 5.3.1, we use the Mean
Absolute Error (MAE) to facilitate the comparison with the state-
of-the-arts [13, 22]. For the experiments on soil macronutrients,
we leverage the coefficient of determination (𝑅2) as the primary
criterion to enable comparison with existing studies [49, 50, 59].
The formula of 𝑅2 is defined as Eq. 11:

𝑅2 = 1 −
∑𝑚
𝑘=1 (𝑦𝑘 − 𝑓 (𝑥𝑘 ))2∑𝑚

𝑘=1 (𝑦𝑘 − 𝑦)2 (11)

where 𝑦𝑘 is the ground truth of the 𝑘𝑡ℎ macronutrient concentra-
tion and𝑚 is the total number of experiment samples. The function
𝑓 is the adapted model function that transforms the input raw data
𝑥𝑘 to the predicted value of macronutrient concentration 𝑓 (𝑥𝑘 ),
𝑥𝑘 is derived from the intensity of reflected light received at the
photodiode, and 𝑦 is the mean value of the macronutrient concen-
tration ground truth. The coefficient of determination 𝑅2 = 1 if
the predicted value 𝑓 (𝑥𝑘 ) exactly matches the observed value 𝑦𝑖 .
A negative value of 𝑅2 indicates that the adapted model is worse
than simply calculating the observed values’ mean.

We also leverage the mean square error of cross-validation (RM-
SECV) and root mean square error of prediction (RMSEP) as the
evaluation metrics. These two criteria are considered as indicators
of error in model predictions. The formulas of RMSECV and RMSEP
are shown in Eq. 12:

𝑅𝑀𝑆𝐸𝐶𝑉 =

√︄∑𝐿𝑐
𝑙=1 (𝑦𝑙 − 𝑦𝑐𝑙 )2

𝐿𝑐

𝑅𝑀𝑆𝐸𝑃 =

√√√∑𝐿𝑝

𝑙=1 (𝑦𝑙 − 𝑦𝑝𝑙 )2

𝐿𝑝

(12)

where 𝑙 is the sample number, 𝐿𝑐 and 𝐿𝑝 are the total number of
samples in the validation and prediction groups, 𝑦𝑐𝑙 and 𝑦𝑝𝑙 are the
predicted concentration values of the target macronutrient from
the validation group and prediction group.

5.2 Experiment Setting

Soil samples for in-lab evaluation. To validate the versatility of
SoilCares across diverse soil types, we use three types of soil with
distinct mixtures, shown in Fig. 10(h).

5.3 In-lab Evaluation
To evaluate the sensing performance across different moisture lev-
els and soil types, we use transparent acrylic boxes (10 cm × 10
cm × 10 cm) to hold the above three types of soil samples with
different moisture levels, spanning from the natural moisture level
to saturation level (50%). For uniform soil moisture distribution, we
cover the soil boxes with plastic wraps with uniform holes and let
the specific amount of water drip through the holes uniformly. The
high-end commodity soil sensor is used for comparison, shown in
Fig. 10(e).
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(a) (b) (c)

Figure 11: On-site scenarios. (a): with new-planted wheat. (b): turned ground. (c): with grass covered

For macronutrient evaluation, in alignment with the procedures
outlined by [43, 50], we use raw sampleswith aweight of 10 g, mixed
with the target macronutrient and distilled water (an additional
weight of 4 g), which are then transferred to a circle transparent
acrylic board (38.5 mm in diameter) and covered by a cylindrical
acrylic box (20 mm in depth) for experimentation.

We make 471 in-lab soil samples, encompassing all soil types
and various concentrations. For the in-lab Soil NPK monitoring,
360 soil samples are prepared with macronutrients ranging from
0.1% to 1%. We also gather 81 samples, which are mixed with three
concentration levels for each macronutrient: 0.2% for Low, 0.5% for
Medium, and 0.8% for High. We establish three distinct levels for
soil moisture: 10% for low moisture level, 20% for medium moisture
level, and 28% for high moisture level to perform the concurrent
soil N/P/K and moisture monitoring.
Soil and fertilization preparation for on-site study. To test
SoilCares in practical scenarios, we conduct 108 on-site experiments
at local farm fields. We select three field types for our study, as
depicted in Fig. 11. To achieve the goal of assessing the effects of
excessive soil fertilization, we adjust the macronutrient levels in
the test fields to approximately 1.5g/kg for nitrogen (N) [1, 52, 58],
1.5g/kg for phosphorus (P) [6, 14, 58], and 2g/kg for potassium
(K) [52], while maintaining soil moisture levels between 20% and
45% throughout the duration of the experiment. The ground truth
is measured after fertilization and full water infiltration [63] using
the device in Fig. 10(e) and Fig. 10(f).

5.3.1 Performance of soil moisture and NPK monitoring.
We first evaluate SoilCares when only one soil substance (soil mois-
ture, N, P, or K) is present in soil samples.
Soil moisture estimation. We conduct experiments to demon-
strate the efficiency of our soil moisture monitoring module across
a wide range of soil moisture levels (5-50% [13]) in agriculture. We
repeat measurements 30 times for each soil sample and compute
the mean output. We compare SoilCares with three baselines: the
state-of-the-art LoRa-based method [13], a NIR-based method [42],
and a high-end commodity device [3]. Fig. 12 shows the overall
MAE across different moisture levels are 2.35%, 2.76%, 1.03%, and
2.54% for LoRa, NIR, SoilCares (LoRa + NIR), and the commodity
device, respectively. SoilCares consistently achieves the highest
accuracy for each moisture level and outperforms the high-end
commodity sensor.

Figure 12: Comparison of soil moisture error among different
moisture estimation methods

Soil NPK estimation.We then assess the ability of SoilCares to
predict soil N, P, and K concentrations across three soil types. Ta-
ble 2 summarizes the performance of SoilCares and three baselines
[49, 50, 59]. Overall, SoilCares achieves a coefficient of determi-
nation of 0.811 for N, 0.803 for P, and 0.837 for K in soil sensing,
comparable to existing methods that require soil pre-processing
to enhance the prediction performance or expensive spectrome-
ters. SoilCares only employs a COTS LoRa device, a few low-cost
LEDs, and photodiodes to perform the function of sensing and
data communication, which are more affordable and portable than
the spectrometer-based method. Contrary to the methods utilized
in [49, 50], our system avoids soil pre-processing (e.g., drying and
grinding) and screening of collected soil samples. Finally, we ob-
serve that the existing LED-based method [49] achieves higher
𝑅2 than SoilCares. However, the soil macronutrient concentration
in their study (10–50%) substantially exceeds the concentration
range specified in soil fertilization guideline [57], and there was
no evidence that the system was evaluated under the practical
macronutrient concentration level.
Impact of membrane across different soil types. For soil mois-
ture estimation, we observe an MAE of 1.03%, reflecting a notable
error reduction of 51.8% compared to the baseline outcome of 2.14%
without membrane. This improvement is mainly attributed to the
uniform surface provided by the membrane, facilitating consis-
tent NIR reflection measurements across different soil types. For
macronutrient sensing, Table 3 compares soil NPK estimation ac-
curacy with and without the membrane. SoilCares achieves an
𝑅2 = 0.811 for N, 𝑅2 = 0.802 for P, and 𝑅2 = 0.837 for K, signifi-
cantly outperforming the performance without the membrane. To
assess the performance of SoilCares across diverse soil types, we
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Table 2: Experimental settings: we evaluate SoilCares performance and comparing with three related works

Work Device # of samples Preprocessing Concentration
for N

Concentration
for P

Concentration
for K

Prediction
Method 𝑅2 for N 𝑅2 for P 𝑅2for K

[50] Spectrometer 300 Required 0-3% 0-5% 0-0.3% PCR / PLSR 0.87 0.99 0.90
[59] Spectrometer 280 Required 0.0032% –0.0208% 0.0025%–0.0343% 0.0041% – 0.03454% PLSR / LS-SVR 0.81 0.78 0.80

[49] LEDS 150 Required 10% - 50% 10% - 50% 10% - 50% Linear /
Unique Curve 0.91 0.99 0.99

SoilCares LEDS 360 Not Required 0-1% 0-1% 0-1% PCR/ PLSR / LS-SVR 0.81 0.80 0.84

Table 3: Impact of membrane and diverse soil types on soil
macronutrient monitoring

Components Calibration
Method 𝑅2 RMSECV RMSEP

N w/ membrane LS-SVR 0.811 0.132 0.135
N w/o membrane PCR 0.439 0.210 0.266
P w/ membrane PCR 0.802 0.128 0.130
P w/o membrane PCR 0.426 0.201 0.239
K w/ membrane LS-SVR 0.837 0.095 0.103
K w/o membrane PCR 0.436 0.216 0.278

employ two evaluation metrics: RMSECV and RMSEP. RMSEP re-
sults are based on leave-one-soil-type-out cross-validation.We train
our model on two types of soil samples and use the data collected
from the third type of soil as the test set to compute RMSEP. This
process is repeated three times to cover all the possible divisions
of train and test sets. Meanwhile, RMSECV results are based on
cross-validation, which mixes all soil samples of different types
and randomly divides the train and test samples at a fixed ratio
of 4:1 in our experiment. We observe that the difference between
RMSEP and RMSECV is less than 0.008, showing the applicability
of our method to various soil types. The results demonstrate the
effectiveness of the membrane design in accommodating diverse
soil types and textures.
Combating single modality bias in soil estimation. A single
modality can be easily affected by environmental factors, such as
soil granularity for NIR sensing and uneven surface for RF sens-
ing. Our multi-modal method is proposed to address this issue. In
Fig. 13(a), we artificially add a bias of 0.55 rad to each RF mea-
surement. The moisture estimation error increases are 5.22% for
the RF-only method and 0.20% for our multi-modal method. Simi-
larly, we add a bias of 0.01 to each NIR measurement in Fig. 13(b).
The moisture error increases are 3.96% and 0.21% for NIR-only and
multi-modal methods, respectively.
Impact of regression methodologies for macronutrient esti-
mation. Fig. 14 illustrates the Cumulative Distribution Function
(CDF) of absolute error across three regression methodologies: Prin-
cipal Component Regression (PCR), Partial Least Squares Regres-
sion (PLSR), and Least Squares Support Vector Regression (LS-SVR).
The LS-SVR method demonstrates superior performance for soil N
and K estimation with the membrane due to its regression process
with kernel-based grid search. Conversely, in scenarios where the
light absorption of the target element is not particularly prominent,

(a) With RF measurement bias (b) With NIR measurement bias

Figure 13: Multi-modal resistance to RF/NIR bias

PLSR and PCR produce better outcomes. A significant advantage
of PCR and PLSR is their ability to discard dimensions with lower
variance during the regression process. This characteristic helps
mitigate the influence of noise [35], leading to more accurate pre-
dictions.

5.3.2 Performance of concurrent soil NPK and moisture monitor-
ing. In this experiment, we assess the performance of our model,
referred to as SoilCares, in scenarios where multiple confound-
ing factors—including soil moisture, nitrogen (N), phosphorus (P),
and potassium (K)—are concurrently present in soil samples. We
partitioned the results into three groups based on their respective
moisture levels: Low, Medium, and High, as illustrated in Sec. 5.2.
Fig. 15 presents the SoilCares’s performance in relation to these
four factors. Under medium soil moisture level, a sum absolute
error of 2.36% for N, P, and K is achieved, which outperforms the
sum error achieved under low moisture level (3.30%) and high mois-
ture level (2.99%). This superior accuracy is mainly attributed to
the lower error in moisture predictions around the medium level,
which, after offsetting the effect of soil moisture, results in more
accurate predictions for macronutrients.

The RMSE values under various moisture levels differ for each
macronutrient element. We observed an RMSE of 0.139 for N, 0.150
for P, and 0.119 for K under the low moisture level. In the case of
medium moisture level, the RMSE values are 0.101 for N, 0.109 for
P, and 0.079 for K. Under the high moisture level, the RMSE values
are 0.132 for N, 0.129 for P, and 0.137 for K. These results show
that the RMSE of K varies significantly across the three settings.
Apart from the factors related to moisture, we also observed that
in the selected spectrum region for K monitoring, the chosen LEDs
exhibit high sensitivity on N. This implies that the concentration
level of N can influence the prediction of the concentration level of
K to some extent [75]. In contrast, the spectrum regions selected
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(a) CDF of Absolute error for N (b) CDF of Absolute error for P (c) CDF of Absolute error for K

Figure 14: The CDFs of absolute error across three regression methodologies: PCR, PLSR, and LS-SVR.

(a) Prediction with low-water level (b) Prediction with medium-water level (c) Prediction with high water level

Figure 15: Prediction for three macronutrients simultaneously

for N and P do not exhibit sensitivity to other elements. Overall,
our system achieves an average RMSE of 0.107 across three distinct
soil moisture levels, each involving three macronutrients, indicat-
ing that SoilCares performs well in concurrently monitoring soil
moisture and NPK levels.

5.4 On-site Study

Impact of device depth in the soil. We conducted on-site ex-
periments at three depths: 0–10 cm, 10–20 cm, and 20–40 cm, as
shown in Fig. 18(b). Most existing works [13, 20, 22] evaluated the
performance of their systems at a depth up to 30 cm. The maximum
testing depth (i.e., 40 cm) in this paper is determined based on the
biological properties of plants. The roots of most plants are beneath
the ground for about 20-30 cm, such as maize and celery [23, 45, 66].
We extend the sensing depth to 40 cm to cover more agricultural
applications. Fig. 16(a) shows the RMSE of soil NPK at the three
depths. We observe that the shallowest depth, 0–10 cm, yields the
most accurate estimates, with an average RMSE of 0.112. As the
depth increases, our system continues to deliver reliable results,
with the RMSE always smaller than 0.182. Specifically, the predic-
tions for N do not vary much across various depths, exhibiting an
average RMSE of 0.145. For P and K, the average RMSE values are
0.147 and 0.129, respectively. These findings affirm that SoilCares

can work effectively at various depths to meet the objectives of
diverse applications in real-world scenarios.
Impact of terrains.We conducted on-site experiments to assess
the effectiveness of SoilCares on various terrains, as depicted in
Fig. 11. Our test sites included farmland with newly planted wheat,
newly turned soil land, and land with wild grass. Fig. 16(b) shows
that SoilCares is comparably effective across all three farmlands.
Across the three terrains and macronutrients, the overall perfor-
mance stands at a mean RMSE of 0.139. This result demonstrates
that SoilCares is adaptable and functional across various soil types
and top coverings.
Impact of weather conditions. To verify the consistency of our
system’s performance under varying weather conditions, particu-
larly under extreme weather (e.g., snow), we conduct experiments
for a total of 60 hours. We start the experiment 12 hours after soil
fertilization and water infiltration. After the inorganic fertilizers
are applied, the macronutrient levels change rapidly in the next 72
hours and need to be closely monitored to avoid negative impacts
on plants and the potential risk of contaminating groundwater. Af-
ter 72 hours, the macronutrient levels change much more slowly.
Fig. 16(c) illustrates the changes in absolute error and the temper-
ature fluctuations. Notably, there are two significant increases in
error during the 36-48th hours and 72nd hour intervals, influenced
by abrupt drops in soil temperature. In the 36-48th hours, the soil
temperature dropped below 0 ◦C. There was snowfall in the 72nd
hour. These weather changes caused the moisture in the soil and the
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(a) (b) (c) (d)

Figure 16: On-Site Soil Macronutrients level estimation across (a) different depths, (b) soil types, (c) soil temperature in time
series (d) effect of moisture prediction error
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membrane to freeze, resulting in an RMSE exceeding 0.20. Despite
these challenges, our system still produces reliable predictions with
an RMSE lower than 0.165 for all other cases when the soil temper-
ature is higher than 0 ◦C, the weather condition for SoilCares to
provide reliable monitoring results.
Impact of soil moisture estimation on soil NPK estimation.
Since the accuracy of soil moisture prediction is closely linked to the
accuracy of macronutrient estimation, we investigate the impact of
soil moisture estimation errors on soil macronutrient prediction. In
this experiment, we focus on soil N prediction. We manually add
noise to our soil moisture module to increase the errors in mois-
ture sensing. Fig. 16(d) shows the RMSE of soil N prediction under
various moisture estimation errors. The prediction error signifi-
cantly escalates as moisture estimation error increases. Reducing
moisture estimation error from 5% to 1% can significantly increase
the prediction accuracy of nitrogen. This indicates that accurate
soil moisture estimation plays a critical role in the performance of
macronutrient prediction. The achieved soil moisture estimation
accuracy in our system is adequate for reliably monitoring soil
macronutrients [49, 50, 59]
Performance of negligible-cost LoRa transmission. We also
evaluate the performance of the proposed negligible-cost LoRa
transmission of the remote controller in the on-site study. The sens-
ing node is buried in the soil, with the membrane and RF antennas
positioned outside the box to ensure direct contact with the soil,
while the circuits are placed inside the box. The sensing node is
buried 60 cm below the soil surface at different locations under
different soil moisture levels (14%, 23%, and 55% by adding water).
Then, we move the controller away from the sensing node at a
step size of 10 m from 0 m (right above the sensing node) to 80 m,
as shown in Fig. 18(a). To evaluate the performance of employing

Long range (80 m)

(a) On-site deployment for LoRa

Depth (20 cm)

(b) On-site deployment for in-soil
box

Figure 18: On-site deployment and communication

the controller for LoRa signal transmission, we adopt the default
parameter setting for LoRa transmission, i.e., a central frequency
of 915 MHz with a channel bandwidth of 125 kHz, a spreading
factor of 12, and a 4/5 coding rate. The controller is programmed to
send 100 LoRa packets. At the sensing node side, the commodity
LoRa node acts as a receiver and decodes the received LoRa packets.
Since the software [9] used in the sensing node only outputs when
a packet is correctly decoded, we cannot obtain the bit error rate.
Therefore, we plot the reported signal-to-noise-ratio (SNR) of those
packets correctly decoded, as shown in Fig. 17. When the remote
controller is right above the under-soil sensing node, the mean
SNR across different moisture levels is all above 12 dB. Even in the
most challenging case under a moisture level of 55%, we can still
achieve successful packet reception at a distance of 80 m, where
the mean SNR drops to -15 dB. Based on this result, the proposed
negligible-cost LoRa transmission can achieve a transmission range
larger than 80 m in real-world farmland, covering an area over
20, 000𝑚2.

6 RELATEDWORK
6.1 Light-based soil macronutrient sensing
Reflectance spectroscopy has found extensive usage in soil analysis
for a large range of elements, such as nitrogen [5, 28], phospho-
rus [18, 49], potassium [16, 30, 43], and other critical elements like
organic carbon [31]. The majority of accurate soil element mea-
surements are conducted under laboratory settings using expensive
and bulky spectrometers, which provide high-quality spectral res-
olution for analyses [29, 50, 59]. These lab-oriented studies often
involve pre-processing steps such as drying and grinding the soil
to mitigate the effects of confounding factors like soil moisture and
particle size. This helps ensure higher measurement accuracy and
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applicability to different soil types or textures [50, 59]. However, the
high cost of spectrometers and the need of pre-processing severely
limit the wide adoption of reflectance spectroscopy for everyday
use. Recent studies have tried to circumvent these issues by adopt-
ing a combination of LEDs and photodiodes as an alternative to
spectrometers [5, 49, 75]. Nevertheless, these works have not fully
addressed the problem of generalizing across different soil types
and still require tedious pre-processing. Moreover, they do not offer
simultaneous prediction of multiple elements.

6.2 RF-based soil moisture sensing
RF-based soil moisture sensing is an emerging field. To replace the
expensive ultra-wide-band ground penetrating radar (GPR) [4, 37],
RF-based soil moisture sensing has been proposed to achieve low-
cost sensing. A variety of RF signals have been exploited for soil
moisture sensing including WiFi [20], RFID [70], LoRa [13] and
LTE [22]. The WiFi-based solution proposes to use WiFi channel
state information (CSI) to realize both moisture and salinity sensing.
The RFID-based approach leverages RFID signal attenuation for
moisture sensing. It is limited to container cases since the RFID
tag needs to be attached to the outer surface of the container. In
comparison, our proposed system can be applied to much broader
application scenarios and achieves a higher accuracy (1% error vs.
3% error). The LoRa- and LTE-based solutions mainly focus on ex-
tending the range of soil moisture sensing and they are not capable
of sensing macronutrients. A recent work [36] achieves a low mois-
ture estimation error (1.1%) leveraging customized RF signals with
a large GHz-bandwidth and expensive high-end software-defined
radio platform ($8000). In comparison, our system achieves a similar
accuracy of 1% with low-cost hardware.

7 DISCUSSION

On-site soil macronutrients and moisture sensing. The pri-
mary distinction between laboratory and field experiments lies in
the additional variables present in the wild that are not encountered
in the lab, such as soil temperature and surface vegetation. It is
essential to maintain the temperature above 0 degrees Celsius to
ensure reliable sensing. Lower soil temperatures can alter the state
of water, complicating the measurement of macronutrients and
degrading the sensing performance. Moreover, stones and sharp
objects could damage the membrane’s surface, affecting the VNIR
reflection. Furthermore, improper setup of the system, such as hav-
ing large air gaps above the membrane, can also negatively impact
system performance.
Over 50% soil moisture. Soil moisture levels in agriculture usually
fall in the range 5% to 45% and the proposed system works well in
this range. We also notice that in extreme cases (e.g., rice paddy),
the soil moisture can be higher than 50%. In this case, the principles
of the proposed system still hold. However, the high moisture can
attenuate RF signals significantly, reducing the sensing range.

8 CONCLUSION
In this paper, we present SoilCares, a system capable of simulta-
neously measuring soil moisture and soil macronutrients using

RF-VNIR sensing. To accurately sense soil moisture and macronu-
trients across diverse soil types and textures, we design a novel
membrane to provide a uniform reflectance surface for Vis-NIR
sensing. Meanwhile, by leveraging the COTS LoRa hardware and
low-cost LEDs and photodiodes, we propose a multi-modal model
combining reflectance spectroscopy and RF sensing for soil mois-
ture and macronutrient sensing. Extensive experiments show that
SoilCares can achieve a root-mean-square error of 0.138 on soil
macronutrient monitoring and 1% mean absolute error on soil mois-
ture monitoring in complex real-world scenarios.
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